Name:	Pd:	_
-------	-----	---

Measuring Speed, Velocity, Acceleration (Outdoor Version: Student Locomotion)

Testable Question: How do you measure velocity?

Prediction: The speed of a person running on a flat surface ______ over time.

Materials

40 meter track stop watches meter stick/measuring tape

Directions

1. Using the meter stick, measure a track that is 40 m long. Place a mark at the half way point, 20 m. Your track should look like the diagram below.

Note: Distance C is the total distance which is 40 m.

- 2. Have 2 people in your group serve as timers. Both should start their watches at the start. Stop the first timer at the 20 m mark. Stop the second timer at the 40 m mark. Record the times in seconds in the data table and then clear the timers. Make note that you must calculate the time for Distance B by subtracting the Distance A time from the Distance C time ($\mathbf{B} = \mathbf{C} \mathbf{A}$).
- 3. Each person in the group should complete 3 trials.

Observations/Data Tables

	Distance of Run			
Time of Run in Seconds	Trials	Distance A Time to Travel 20 Meters	Distance B Time to Travel 20 Meters	Distance C Time to Travel 40 Meters
	1			
	2			
	3			
	Average Time			

HINT
(Distance C Time)

- (Distance A Time)
(Distance B Time)

Average Time = Add up the times for Trial 1, 2, and 3 for Distance A, B, and C (respectively).

Then, divide by 3 (the number of pieces of data you have). Write your answer for each in the "Average Time" space.

Velocity Calculations

Average Velocity =
$$\frac{\text{Distance}}{\text{Average Time}}$$
 = $\frac{\# \text{Meters}}{\text{Seconds}}$

	Distance A (First 20 Meters)	Distance B (Second 20 Meters)	Distance C (Total Distance/Average Time)
Velocity (Speed) (Show your work)			

Graph

Speed

m/s

Distance A

Distance B

Distance C

SIXTH GRADE * UNIT

Summary Questions

	ary Questions
1.	Describe what happened to the <u>time</u> it took you to run an equal distance as you moved <u>farther</u> down the track.
2.	Did the velocities in this investigation remain constant? Explain your answer.
3.	What factors could affect the velocity of a moving object but not the speed?
	Are there factors that could affect the speed but not the velocity?
4.	The formula for acceleration is: Final velocity — Original velocity Time of change
	Use the data from the investigation to calculate the average acceleration of your run. (HINT: Use the velocity numbers you wrote in the box for Distances A and B on the 2^{nd} page)
5.	When we test our bumpers, why is it important to keep the velocity of each group's car constant?

